# MATH 54 - HINTS TO THE NOT-HOMEWORK 

PEYAM TABRIZIAN

Here are a couple of hints to the Not-Homework! (in case you're interested) Enjoy :)

## SECTION 7.1: DiAGONALIZATION of Symmetric matrices

7.1.1. $A$ is symmetric if $A^{T}=A$. In other words, the matrix is symmetric with respect to its main diagonal!
7.1.7, 7.1.13. Remember orthogonal matrices have orthonormal columns! Also, if $A$ is orthogonal and square, then $A^{-1}=A^{T}$, so $A^{-1}$ is easy to calculate!
7.1.13, 7.1.17. First diagonalize the matrix as usual, and then apply Gram-Schmidt to each eigenspace! Don't do it on all 3 eigenvectors, just do it on the eigenvectors on each eigenspace, so in practice you would have to do $2-3$ mini G-S processes instead of one huge one!
7.1.25.
(a) $\mathbf{T}$ (If $A=P D P^{T}$, then $A^{T}=P D^{T} P^{T}=P D P^{T}=A$ )
(b) $\mathbf{T}$ (If $A$ is symmetric, then eigenvectors corresponding to distinct eigenvalues are orthogonal)
(c) $\mathbf{F}$ (Consider $A=I$, it has only one eigenvalue $\lambda=1$, but it is symmetric)
(d) $\mathbf{T}$

### 7.1.26.

(a) $\mathbf{T}$ (This is theorem 2 on page 390)
(b) $\mathbf{T}$ (If $B=P D P^{T}$, then $B^{T}=P D^{T} P^{T}=P D P^{T}=B$ )
(c) $\mathbf{F}$ (those are two separate concepts! Orthogonally diagonalizable means that there is an orthogonal matrix $P$ such that $A=P D P^{T}$. For example, $\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$ is orthogonal, but not orthogonally diagonalizable because it is not symmetric! See theorem 2)
(d) $\mathbf{T}$ (that's another way of saying that symmetric matrices are diagonalizable)
7.1.29. If $A=P D P^{T}$, then

$$
A^{-1}=\left(P^{T}\right)^{-1} D^{-1} P^{-1}=\left(P^{-1}\right)^{T} D^{-1} P^{-1}=\left(P^{T}\right)^{T} D^{-1} P^{T}=P D^{-1} P^{T}
$$

Hence $A^{-1}$ is orthogonally diagonalizable! Here we used the fact that $P^{-1}=P^{T}$ since $P$ is orthogonal and square!

Or you can show that $A^{-1}$ is symmetric using the fact that $A$ is symmetric:

[^0]$$
\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}=A^{-1}
$$
7.1.30. Here it is easier to use theorem 2. Just show $B A$ is symmetric! But:
$$
(B A)^{T}=A^{T} B^{T}=A B=B A
$$

Hence $B A$ is symmetric! Here we used the fact that $A^{T}=A$ and $B^{T}=B$ since $A$ and $B$ are symmetric and that $A B=B A$


[^0]:    Date: Never.

