MATH 54 - HINTS TO THE NOT-HOMEWORK

PEYAM TABRIZIAN

Here are a couple of hints to the Not-Homework! (in case you're interested) Enjoy :)

SECTION 7.1: DIAGONALIZATION OF SYMMETRIC MATRICES

7.1.1. A is symmetric if $A^T = A$. In other words, the matrix is symmetric with respect to its main diagonal!

7.1.7, 7.1.13. Remember orthogonal matrices have **orthonormal** columns! Also, if A is orthogonal and square, then $A^{-1} = A^T$, so A^{-1} is easy to calculate!

7.1.13, 7.1.17. First diagonalize the matrix as usual, and then apply Gram-Schmidt **to** each eigenspace! Don't do it on all 3 eigenvectors, just do it on the eigenvectors on each eigenspace, so in practice you would have to do 2 - 3 mini G-S processes instead of one huge one!

7.1.25.

- (a) **T** (If $A = PDP^T$, then $A^T = PD^TP^T = PDP^T = A$)
- (b) **T** (If A is symmetric, then eigenvectors corresponding to distinct eigenvalues are orthogonal)
- (c) **F** (Consider A = I, it has only one eigenvalue $\lambda = 1$, but it is symmetric)
- (d) **T**

7.1.26.

- (a) **T** (This is theorem 2 on page 390)
- (b) **T** (If $B = PDP^T$, then $\tilde{B}^T = PD^TP^T = PDP^T = B$)
- (c) \mathbf{F} (those are two separate concepts! Orthogonally diagonalizable means that there

is an orthogonal matrix P such that $A = PDP^T$. For example, $\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$ is orthogonal, but not orthogonally diagonalizable because it is not symmetric! See

theorem 2)

(d) T (that's another way of saying that symmetric matrices are diagonalizable)

7.1.29. If $A = PDP^{T}$, then

$$A^{-1} = (P^{T})^{-1} D^{-1} P^{-1} = (P^{-1})^{T} D^{-1} P^{-1} = (P^{T})^{T} D^{-1} P^{T} = P D^{-1} P^{T}$$

Hence A^{-1} is orthogonally diagonalizable! Here we used the fact that $P^{-1} = P^T$ since P is orthogonal and square!

Or you can show that A^{-1} is symmetric using the fact that A is symmetric:

Date: Never.

$$(A^{-1})^T = (A^T)^{-1} = A^{-1}$$

7.1.30. Here it is easier to use theorem 2. Just show BA is symmetric! But:

$$(BA)^T = A^T B^T = AB = BA$$

Hence BA is symmetric! Here we used the fact that $A^T = A$ and $B^T = B$ since A and B are symmetric and that AB = BA